Trigonometric Identities
Half Angle Identities
$$ \cos{\frac{\theta}{2}} = \sqrt{\frac{1 + \cos{\theta}}{2}} $$
$$ \sin{\frac{\theta}{2}} = \sqrt{\frac{1 - \cos{\theta}}{2}} $$
therefore:
$$ 2\cos^2{\frac{\theta}{2}} = 1 + \cos{\theta} $$
$$ 2\sin^2{\frac{\theta}{2}} = 1 - \cos{\theta} $$
Sum and Difference Formulas
$$ \cos{(a + b)} = \cos{a}\cos{b}-\sin{a}\sin{b} $$
$$ \cos{(a - b)} = \cos{a}\cos{b}+\sin{a}\sin{b} $$
$$ \sin{(a + b)} = \sin{a}\cos{b}+\cos{a}\sin{b} $$
$$ \sin{(a - b)} = \sin{a}\cos{b}-\cos{a}\sin{b} $$
Linear Combinations
$$ a \cos x + b \sin x = \sqrt{a^2 + b^2} \cos{(x - \arctan2{(b, a)})} $$
$$ a \cos x + b \sin x = \sqrt{a^2 + b^2} \cos{(x + \text{Arctan}{(-b/a))})} $$